TOPIC – INVERSE TRIGONOMETRIC FUNCTIONS

ASSIGNMENT

TEACHER: MANISHA ROY

CLASS-12

IMPORTANT POINTS

MATHEMATICS

Definitions of inverse trigonmoetric functions

The function $\sin x$ is one-one and onto from $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ to [-1, 1] and its inverse

function \sin^{-1} has domain [-1, 1] and range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

- The function $\cos x$ is one-one and onto from [0, π] to [-1, 1] and its inverse function $\cos^{-1} x$ has domain [-1, 1] and range [0, π].
- The function $\tan x$ is one-one and onto from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

 $\tan^{-1} x$ has domain R and range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

- The function $\cot x$ is one-one and onto from $(0, \pi)$, to R and its inverse function $\cot^{-1} x$ has domain R and range (0, π).
- The function $\sec x$ is one-one and onto from $[0, \pi]$ $\{\pi/2\}$ to R (-1, 1) and its inverse function $\sec^{-1} x$ has domain R - (-1, 1) and range [0, π] - { π /2}.
- VI. The function cosec x is one-one and onto from $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ {0} to R (-1, 1) and

its inverse function $\csc e^{-t}x$ has domain R - (-1, 1) and range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ - {0}.

Values of inverse trigonometric functions

2.

- For $x \in [-1, 1]$, the value of $\sin^{-1} x = \theta$ if $\sin \theta = x$ and $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. I.
- For $x \in [-1, 1]$, the value of $\cos^{-1} x = \theta$ if $\cos \theta = x$ and $\theta \in [0, \pi]$
- For $x \in \mathbb{R}$, the value of $\tan^{-1} x = \theta$ if $\tan \theta = x$ and $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
- For $x \in \mathbb{R}$, The value of $\cot^{-1} x = \theta$ if $\cot \theta = x$ and $\theta \in (0, \pi)$.
- For $x \in \mathbb{R}$ (-1, 1), the value of $\sec^{-1}x = \theta$ if $\sec \theta = x$ and $\theta \in [0, \pi]$ $\{\pi/2\}$.

- VI. For $x \in \mathbb{R}$ (-1, 1), the value of $\csc^{-1}x = \theta$ if $\csc\theta = x$ and $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ {0}.
- VII. If is positive or zero then the values of all inverse trigonometric functions lie between 0 and π /2 inclusive. If is negative, then the values of lie between- π /2 and 0 inclusive and the values of lie between π /2 and inclusive.

Important formulae

I. (i)
$$\sin^{-1}(\sin\theta) = \theta$$
. $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

(ii)
$$\cos^{-1}(\cos\theta) = \theta, \ \theta \in [0, \pi]$$

(iii)
$$\tan^{-1}(\tan\theta) = \theta, \ \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

(iv)
$$\cot^{-1}(\cot \theta) = \theta$$
, $\theta \in (0, \pi)$

(v)
$$\sec^{-1}(\sec \theta) = \theta, \ \theta \in [0, \pi] - \{\pi/2\}$$

(vi)
$$\cos ec^{-1}(\cos ec\theta) = \theta, \ \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$

II. (i)
$$\sin(\sin^{-1} x) = x$$
, $x \in [-1, 1]$

(ii)
$$\cos(\cos^{-1} x) = x, x \in [-1, 1]$$

(iii)
$$\tan(\tan^{-1} x) = x, x \in R$$

(iv)
$$\cot(\cot^{-1} x) = x, x \in R$$

(v)
$$\sec(\sec^{-1} x) = x, x \in R - (-1, 1)$$

(vi)
$$\csc(\csc^{-1}x) = x, x \in R - (-1, 1)$$

III. (i)
$$\sin^{-1}(-x) = -\sin^{-1}x, x \in [-1, 1]$$

(ii)
$$\cos^{-1}(-x) = \pi - \cos^{-1}x, x \in [-1, 1]$$

(iii)
$$\tan^{-1}(-x) = -\tan^{-1}x, x \in R$$

(iv)
$$\cot^{-1}(-x) = \pi - \cot^{-1}x, x \in R$$

(v)
$$\sec^{-1}(-x) = \pi - \sec^{-1}x, x \in R - (-1, 1)$$

(vi)
$$\csc^{-1}(-x) = -\csc^{-1}x, x \in R - (-1, 1)$$

IV. (i)
$$\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1}x$$
 for $x \le -1$ or $x \ge 1$

(ii)
$$\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}x \text{ for } x \le -1 \text{ or } x \ge 1$$

(iii)
$$\tan^{-1}\left(\frac{1}{x}\right) = \begin{cases} \cot^{-1} x & \text{for } x > 0\\ -\pi + \cot^{-1} x & \text{for } x < 0 \end{cases}$$

V. (i)
$$\sin^{-1} x + \cos^{-1} x = \pi/2, x \in [-1, 1]$$

(ii)
$$\tan^{-1} x + \cot^{-1} x = \pi/2, x \in R$$

(iii)
$$\sec^{-1} x + \csc^{-1} x = \pi/2$$
, $x \in R - (-1, 1)$

VI. (i) (a)
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$$
, if $xy < 1$

(b)
$$\tan^{-1} x + \tan^{-1} y = \pi + \tan^{-1} \frac{x + y}{1 - yy}$$
 if $x > 0$, $y > 0$, $xy > 1$

(c)
$$\tan^{-1} x + \tan^{-1} y = -\pi + \tan^{-1} \frac{x + y}{1 - xy}$$
 if $x < 0$, $y < 0$, $xy > 1$

(ii)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}$$
, if $xy > -1$

VII. (i)
$$\sin^{-1} x + \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right]$$

if either $x^2 + y^2 \le 1$ or $xy < 0$, $|x| \le 1$, $|y| \le 1$

(ii)
$$\sin^{-1} x - \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right]$$

if either $x^2 + y^2 \le 1$ or $xy > 0$, $|x| \le 1$, $|y| \le 1$

VIII. (i)
$$\cos^{-t} x + \cos^{-t} y = \cos^{-t} \left[xy - \sqrt{1 - x^2} \sqrt{1 - y^2} \right] \text{if } x + y \ge 0, |x| \le 1, |y| \le 1$$

(ii)
$$\cos^{-t} x - \cos^{-t} y = \cos^{-t} \left[x y + \sqrt{1 - x^2} \sqrt{1 - y^2} \right]$$
 if $x \le y$, $|x| \le 1$, $|y| \le 1$

IX. (i)
$$\sin^{-1} \frac{2x}{1+x^2} = 2 \tan^{-1} x, \ x \in [-1, 1]$$

(ii)
$$\cos^{-1}\frac{1-x^2}{1+x^2} = 2\tan^{-1}x, \ x \in [0, \infty)$$

(iii)
$$\tan^{-1} \frac{2x}{1-x^2} = 2 \tan^{-1} x, x \in (-1, 1)$$

X. (i)
$$2\sin^{-1}x = \sin^{-1}(2x\sqrt{1-x^2})$$
, $x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$

(ii)
$$2\cos^{-1}x = \cos^{-1}(2x^2 - 1), x \in [0, 1]$$

INVERSE TRIGONOMETRIC FUNCTIONS

(1 Mark Questions)

1. Find the principal values of the following:

(i)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

(ii)
$$\cos^{-1}\left(\frac{-1}{2}\right)$$

(iii)
$$\cot^{-1}\left(-\sqrt{3}\right)$$

(iv)
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

(v)
$$\sec^{-1}\left(-\sqrt{2}\right)$$

(vi)
$$\sin^{-1}\sin\left(\frac{4\pi}{5}\right)$$

(vii)
$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$$

(viii)
$$\tan^{-1}\left(\tan\frac{5\pi}{6}\right)$$

(ix)
$$\sin^{-1}\left(\sin\frac{4\pi}{3}\right)$$

(x)
$$\cos^{-1}\left(\cos\frac{5\pi}{3}\right)$$

ANSWERS

1. (i) $\frac{\pi}{3}$

(ii) $\frac{2\pi}{3}$

(iii) $\frac{5\pi}{6}$

- (iv) $\frac{\pi}{6}$
- $(v) \quad \frac{3\pi}{4}$

(vi) $\frac{\pi}{5}$

(vii) $\frac{5\pi}{6}$

(x)

(viii) $\frac{-\pi}{6}$

(ix) $\frac{-\pi}{3}$

(4 Marks Questions)

Find the values of the following

(i)
$$\tan^{-1}(\sqrt{3}) + \cos^{-1}\left(\frac{1}{2}\right)$$

(ii)
$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right) + \cos^{-1}\left(\cos\frac{4\pi}{3}\right)$$

(iii)
$$\sin\left(\frac{\pi}{3}-\sin^{3}\left(-\frac{1}{2}\right)\right)$$

(iv)
$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$$

(v)
$$\sin^{-1}\left(\frac{2}{3}\right) + \sin^{-1}\left(\frac{4}{5}\right)$$

(vi)
$$\sin^{-1}\left(-\frac{1}{2}\right) + 2\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

(viii)
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

(vii)
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 (viii) $\tan^{-1}\left(-1\right) + \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$

Solve for x

(i)
$$\tan^{-1} x = \sin^{-1} \left(\frac{1}{\sqrt{2}} \right)$$

(ii)
$$\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$$

Simplify the following:

(i)
$$\tan^{-1}\left(\frac{\sin x}{1+\cos x}\right)$$

(ii)
$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)$$

(iii)
$$\tan^{-1} \left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} - \sin \frac{x}{2}} \right)$$
 (iv) $\cot^{-1} \left(\frac{1 + \sin x}{\cos x} \right)$

(iv)
$$\cot^{-1}\left(\frac{1+\sin x}{\cos x}\right)$$

Prove that

(i)
$$\tan^{-1}(1/4) + \tan^{-1}(2/9) = \frac{1}{2}\cos^{-1}(3/5)$$

(ii)
$$\sin^{-1}(4/5) + 2\tan^{-1}(1/3) = \pi/2$$

(iii)
$$\sin^{-1}(5/13) + \cos^{-1}(3/5) = \tan^{-1}(63/16)$$
.

$$\tan\left(\cos^{-1}\frac{4}{5} + \tan^{-2}\frac{2}{3}\right) = \frac{17}{6}$$

4
$$\sin^2 \frac{1}{\sqrt{10}} \cdot \cos^2 \frac{2}{\sqrt{5}} = \pi$$

4 $\sin^2 \frac{1}{\sqrt{10}} \cdot \cos^2 \frac{2}{\sqrt{5}} = \pi$
5 It tan' x + tan' y + tan' z = $\pi/2$ prove that yz + zx + xy =

5 If tan' x + tan' y + tan' z =
$$\pi/2$$
 prove that yz + zx + xy = 1

5 If
$$\tan^2 x + \tan^2 y + \tan^2 z = \pi$$
, prove that $x + y + z = xyz$
6 If $\tan^2 x + \tan^2 y + \tan^2 z = \pi$, prove that $x + y + z = xyz$

6 If
$$\tan^2 x + \tan^2 y + \tan^2 z = \pi$$
, prove that $x^2 + y^2 + z^2 + 2xyz = 1$
7 If $\cos^2 x + \cos^2 y + \cos^2 z = \pi$, prove that $x^2 + y^2 + z^2 + 2xyz = 1$

8 It
$$\cos^{\frac{1}{2}} \frac{x}{a} + \cos^{\frac{1}{2}} \frac{y}{b} = \alpha$$
, prove that $\frac{x^2}{a^2} - 2\frac{xy}{ab}\cos\alpha + \frac{y^2}{b^2} = \sin^2\alpha$

Solve the following equations 9

(i)
$$\tan^{-1}\left(\frac{x-1}{x+1}\right) + \tan^{-1}\left(\frac{2x-1}{2x+1}\right) = \tan^{-1}(23/36)$$

(ii)
$$\sin^{-1}\left(\frac{3x}{5}\right) + \sin^{-1}\left(\frac{4x}{5}\right) = \sin^{-1}x$$

(iii)
$$\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\frac{8}{31}$$

(iv)
$$\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}3x$$

Simplify: 10

(i)
$$\tan \left(\frac{\sqrt{1+x^2}+1}{x}\right), x \neq 0$$

(ii)
$$\sin^{-1}\left(\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right)$$
, $0 < x < 1$

(iii)
$$\tan^{-1}\left(\frac{x}{a+\sqrt{a^2-x^2}}\right)$$
, $-a < x < a$

11. If
$$\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2b}{1+b^2}\right) = 2\tan^{-1}x$$
, prove that $x = \frac{a+b}{1-ab}$

12. Prove that :

$$\tan\left[\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right] + \tan\left[\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right] = \frac{2b}{a}$$

13. Prove that :

(i)
$$\tan^{-1}\left[\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}\right] = \frac{1}{2}\sin^{-1}(x^2), |x| < 1$$

(ii)
$$tan^{-1} \left[\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right] = \frac{\pi}{4} + \frac{1}{2} cos^{-1} \left(x^2 \right), \left| x \right| < 1$$

14. Simplify:

(i)
$$\sin^{-1}\left[\frac{\sin x + \cos x}{\sqrt{2}}\right], -\frac{\pi}{4} < x < \frac{\pi}{4}$$

(ii)
$$\cos^{-1}\left[\frac{\sin x + \cos x}{\sqrt{2}}\right], \frac{\pi}{4} < x < \frac{5\pi}{4}$$

15. Prove that :

(i)
$$\cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right] = \frac{\pi}{2} - \frac{x}{2}, \text{ if } \frac{\pi}{2} < x < \pi$$

et:

(ii)
$$\tan^{-1} \left[\frac{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}} \right] = \frac{\pi}{4} - \frac{x}{2}$$
, if $\pi < x < \frac{3\pi}{2}$

ANSWERS (4 Marks)

1. (i) $\frac{2\pi}{3}$

(ii)

(iii) 1

(iv) $\frac{\pi}{4}$

(v) $\sin^{-1}\left(\frac{6+4\sqrt{5}}{15}\right)$

(vi) $\frac{3\pi}{2}$

 $(vii) \quad \frac{-\pi}{6} \qquad \qquad (viii) \quad \frac{\pi}{2}$

2 (i) 1

(ii) $\frac{\sqrt{3}}{2}$

3. (i) x/2

(ii) $\frac{x}{2}$

(iii) $\frac{\pi}{4} + \frac{x}{2}$

(iv) $\frac{\pi}{4} - \frac{x}{2}$

9. (i) $\frac{4}{3}$ (ii) 0, ± 1 (iii) $\frac{1}{4}$ (iv) 0, ± 1/2

10. (i) $\frac{\pi}{2} - \frac{1}{2} \tan^{-1} x$ (ii) $\frac{\pi}{4} + \frac{1}{2} \cos^{-1} x$ (iii) $\frac{1}{2} \sin^{-1} \frac{x}{a}$

14. (i) $x + \frac{\pi}{4}$ (ii) $x - \frac{\pi}{4}$